

ClimatEurope WP4-D4.1 Webinar 16 November 2016

Linking climate modelling research infrastructure & climate services

Sylvie Joussaume CNRS, IPSL, Saclay, France Coordinator of FP7 IS-ENES2 ClimatEurope WP4

IS-ENES:

Infrastructure for ENES 1^{rst} phase: March 2009- Feb 2013 2nd phase: Apr 2013- March 2017 « Integrating Activities »

Support WCRP international coordinated experiments Used in IPCC Assessments Reports

CMIP5 international coordinated experiments « Reference simulations »

Evaluate/Understand/Projections

3400 simul. yrs up to > 12000 yrs 50 expts up to > 160 expts **CMIP5: 2000 Tbytes** (CMIP3: 36)

RCP 2.6 IPCC AR5 SPM (2013) RCP 8.5 (a) Change in average surface temperature (1986-2005 to 2081-2100)

IPCC AR5 TS (2014)		2046-2065		2081-2100	
	Scenario	Mean	Likely range ^c	Mean	Likely range ^c
Global Mean Surface Temperature Change (°C) ^a	RCP2.6	1.0	0.4 to 1.6	1.0	0.3 to 1.7
	RCP4.5	1.4	0.9 to 2.0	1.8	1.1 to 2.6
	RCP6.0	1.3	0.8 to 1.8	2.2	1.4 to 3.1
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8

Model evaluation

OBS other set of observations

LW outgoing radiation

SW cloud radiative effect

A common infrastructure distributed database & standards

CMIP5: 2 PB

Adoption of common standards/ conventions for the:

Structure and format of climate data Metadata used to describe climate data Vocabulary used for categorizing the diversity of model output

& Documentation of Model/experiments (ES-DOC) Standardization enables/facilitates Automation in the preparation of model output Analysis by researchers using uniform methods for reading and interpreting data Unique identification of files Sharing of data across the ESGF network

Ref: from Doutriaux and Taylor, 4th ESGF meeting, 12/2014

A European Research and Innovation Roadmap for Climate Services (2015)

Which challenges are raised for the climate modelling

research infrastructure by climate services ?

Data & metadata

Existing RI

- Common standards for data and metadata
- Quality control of data

Needed for CS:

- Sustained reliable service
- Tools to facilitate usage
- Compute facilities for indicators

Added Value for research:

- Integration of models and observations
- Consistent standards with predictions
- Support further developments

CMIP Reference simulations

Existing RI:

- Multi-model, scenarios, ensembles
- Well-evaluated

Needed for CS:

- Larger range of scenarios & ensembles
- Larger set global/regional projections
- bias corrected & guidance

Added value for research:

- Better quantification of uncertainties
- Larger range of users

Votige of the sector of the se

Climate Data Store

Reanalyses Satellite data (ESA CCI) Seasonal Forecasts Projections (Global/Regional)

CLIPC: Climate Information Portal for Copernicus Precursor project Based on ESGF Global projections : broker on ESGF Lot 1: ESGF node for C3S (BADC, DKRZ & IPSL) Lot 2: Multi-model product generation (in negotiation) Lot 3: Roadmap towards a reference set of climate projections (MetOffice, with IPSL)

Regional projections (on-going tender) Lot 1: Access to CORDEX data Lot 2: Set of regional simulations for Europe

CLIPC Copernicus precursor project & IS-ENES

How to manage the situation with the H2020 work programme where climate services show a tendency to be better funded than climate observations, model development and infrastructure?

• Need to support climate science: better understanding, prepare future climate services, improve models, sustain infrastructure

SWOT analysis: research infrastructure (RI) & climate services (CS)

Strengths

CMIP:

Better ensemble mean, range of uncertainty, well evaluated, source for downscaling, computation of various indicators

Data Infrastructure:

common database with common standards for data & metadata CLIPC precursor project

Assets for climate services

Opportunities Climate services (CS) as users:

Strong added value, wider impact Better integration with observations & predictions: also serving research Possible private funding by CS users

Weaknesses

CMIP:

Limited set of scenarios, Better at large regional scale (>2000 km), need for downscaling & bias corrections

Data Infrastructure: Distributed, project funded

Threats Climate services (CS) as users:

CMIP not answering CS needs Sustaining funding support (for RI) Difficulty to support climate science Insufficient reliability of RI for services Int. Governance (independent of CS)