ECERFACS

LENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

www.cerfacs.fr

5th Climate Europe Webminar

Model drift analysis to understand the causes of systematic errors in climate prediction systems

Emilia Sanchez-Gomez Katerina Goubanova and collaborators

Linking science and society

Climate Prediction System

Climate Prediction System

Climate Prediction System

Evaluation of climate models

Drift Analysis to understand model biases

The **model drift** is the sequence of physical processes by which model adjust to its <u>equilibrium state or attractor</u>

Drift Analysis to understand model biases

The drift (or bias adjustment) analysis depends on the spatial and timescales considered in the physical problem:

 Fast atmospheric processes (convective processes, clouds) hours to days

Transpose-AMIP protocol

Ocean subsurface (mixing processes)
days to months

Seasonal forecast

Deep ocean circulation and gyres
years, decades

Decadal forecast

Understanding climate model biases

Coupled models continue to suffer from severe equatorial SST biases over the **Tropical Atlantic**

What is the origin of SST biases in the SouthEastern Tropical Atlantic (SETA)?

Drift Analysis to understand model biases

PRE

2-months averaged evolution of the SST bias with respect to GLORYS2v3

Model:

CNRM-CM : ARPEGE (~50km) (T359L31) and NEMO ~0.25° (ORCA025L75)

Seasonal forecast:

- Initialization from ERAI and GLORYS2v3
- Start date: 1 February
- 10 years: 2000-2009
- Three-members, 6 months lead time

Goubanova et al. 2017 (in prep.)

Drift of ocean subsurface temperature

Drift in wind stress

Shading : wind stress amplitude Vector: wind stress vector Contour: zonal wind stress

Goubanova et al. 2017 (in prep.)

Drift in wind stress

Mean evolution of the equatorial wind stress (2°S- 2°N)

Shading : wind stress amplitude Vector: wind stress vector Contour: zonal wind stress

Goubanova et al. 2017 (in prep.)

PRE

Sensitivity experiments

TAUEQ : Seasonal forecast experiment with wind stress replacement (ERAI) at the equator

Goubanova et al. 2017 (in prep.)

Sensitivity experiments

Sensitivity experiments

SST bias daily evolution over the SETA (°C):

Remote forcing from the equator contributes to ~50% of warm SETA SST bias in CNRM-CM model

Physical analysis SST biases in SETA

Mixed-layer temperature tendency terms

TemperRATE = XY_Adv + Z_Adv + Atm.FORC + Vert.DIFF + ENTR + Res

CTRL: Spurious particular warm horizontal advection **TAUEQ**: warm horizontal advection disappears

Conclusions

Usefulness of drift analysis in Climate Prediction Systems to understand the origin of model systematic biases

(Toniazzo and Woolnough 2013; Vanniere et al. 2013,2014; Sanchez-Gomez et al. 2016; Goubanova et al. (in prep))

Case study: Tropical Atlantic SST bias

- Seasonal forecasts CNRM-CM model
- Analysis of the drift to understand SST bias in the SETA region
- ✓ 50% of SST bias can be explained by spurious warm advection from the equator, due to atmospheric biases (equatorial westerly wind bias).
- ✓ Transpose-AMIP analysis shows that atmospheric westerly bias develop very fast (within the first 5 days) (Roehrig et al.)